Aluminum Halide Effects on Metathesis of 2-Pentene by a Binary Catalyst System of Tungsten Hexachloride and *n*-Butyllithium*

JIN-LIANG WANG, H. R. MENAPACE, AND M. BROWN

Research Division, The Goodyear Tire & Rubber Company, Akron, Ohio 44316

Received February 4, 1972

Metathesis of mixed 2-pentene (46% trans and 54% cis) by a binary catalyst system of tungsten hexachloride and n-butyllithium has been reported to attain the theoretical maximum conversion, 50%, in 4 hr at room temperature. Aluminum halides have exerted substantial effects on this metathesis reaction in the presence of WCl₆ and n-BuLi. It has been found that aluminum halide at less than 1 mole/mole of WCl₆ accelerated the formation of 3-hexene and 2-butene in high conversion and selectivity in 15 min reaction time. Beyond this level, conversion was increased at the expense of selectivity.

INTRODUCTION

A homogeneous catalyst system for olefin metathesis has been disclosed by several workers (1-5). The preferred catalyst was obtained by the interaction of tungsten hexachloride, ethanol, and ethylaluminum dichloride. Isomerization and oligomerization also occurred when olefins were metathesized over a solid catalyst of molybdenum or tungsten oxides on alumina at temperatures from 90 to 260°C (6, 7). At 0°C in chlorobenzene, the catalyst system $Py_2Mo_2-(NO)_2Cl_2-EtAlCl_3$ converts 2-pentene into 2-butene and 3-hexene, reaching a maximum conversion of 50% in 10 min (8).

In this paper, the effects of aluminum halides on metathesis of 2-pentene by a binary catalyst system of tungsten hexachloride and *n*-butyllithium are described.

EXPERIMENTAL METHODS

Materials and glc Analysis

These were the same as those described in our previous paper (4). A mixture of 46% trans- and 54% cis-2-pentene was used.

* Contribution No. 488.

Copyright © 1972 by Academic Press, Inc. All rights of reproduction in any form reserved.

Procedure

All the reactions were carried out in 4 oz glass bottles at room temperature. Injections of chemical reagents were done by means of hypodermic syringes. Two orders of injections were used: (1) non-premixing system, that is, WCl_6 , mixed 2-pentenes, n-BuLi and AlX₃ were added successively; (2) premixing system, that is, WCl_6 and *n*-BuLi were premixed for 10 or 30 min and then 2-pentene and aluminum halide were added successively and reacted for 15 min. In both systems, reaction was terminated with 1 ml of isopropyl alcohol. In all the experiments, ratios of $WCl_{6}/2$ -pentene/n-BuLi were 0.0002/0.01/0.0004. Reaction time began from the time of injection of aluminum halide.

RESULTS

The terms "conversion" and "selectivity" used here have the same meanings as those described in our previous paper (4).

1. Non-Premixing System

Without aluminum halide, metathesis of 2-pentenes into 3-hexene and 2-butene by a binary catalyst system of tungsten hexachloride and n-butyllithium yielded 10% conversion and 98 mole % total se-

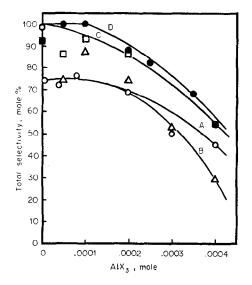
455

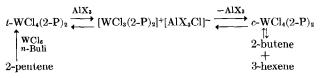
AlCl ₃ , mole	0	. 000008	. 00004	. 00008	. 0002	. 0003	. 0004
Conversion, %	10	18	32	39	. 0002 61	. 0005 69	70
Selectivity to 3-hexene, mole %	47	37	35	38	40	31	28
Selectivity to 2-butene, mole %	51	37	37	38	29	19	17
Total selectivity, mole $\%$	98	74	72	76	69	50	45
2-pentene, trans/cis	1.2	1.2	1.9	3.2	4.7	5.6	5.2
2-butene, trans/cis	0.8	0.9	1.2	1.6	2.5	2.8	2.5

TABLE 1 EFFECT OF ALUMINUM CHLORIDE

TABLE 2Effect of Aluminum Bromide

AlBr ₃ , mole	0	. 00005	. 0001	. 0002	. 0003	. 0004
Conversion, %	10	12	36	43	64	73
Selectivity to 3-hexene, mole %	47	36	45	39	30	19
Selectivity to 2-butene, mole %	51	38	42	35	23	10
Total selectivity, mole %	98	74	87	74	53	29
2-pentene, trans/cis	1.2	1.4	3.0	3.5	6.7	9.0
2-butene, trans/cis	0.8	0.8	1.4	1.5	2.5	2.7




FIG. 1. A plot of total selectivity (mole %) vs AlX₂ (mole): \bigcirc , AlCl₃ effect on non-premixing system (A); \triangle , AlBr₃ effect on non-premixing system (B); \square , AlCl₃ effect on premixing system (C); \bigcirc , AlBr₃ effect on premixing system (D).

lectivity in 15 min reaction time. With aluminum halide, conversion was increased at the expense of selectivity. This trend continued with increasing aluminum halide (Tables 1 and 2). The initial rate of reaction appeared to be $AlCl_3 > AlBr_3$. Total selectivities were approximately the same in both $AlCl_3$ and $AlBr_3$ systems. (See Fig. 1, curves A, B.) The high conversions caused by small amount of AlX_3 may be explained by: $WCl_6 + AlX_3 \rightarrow [WCl_5]^+ \cdot$ $[AlX_3Cl]^-$.

2. Premixing System

WCl₆ and *n*-BuLi were premixed for 10 min and then 2-pentenes and AlX₃ were added successively and reacted for 15 min. In both AlCl₃ and AlBr₃ systems, conversion was increased in a similar way, but total selectivity was much higher than obtained in the non-premixing runs of system (1) (Fig. 1, curves C, D). The initial rate of reaction appeared to be AlCl₃ > AlBr₃, but the total selectivity suggested AlCl₃ ~ AlBr₂ (Tables 3 and 4).

The prereaction of WCl_6 and *n*-BuLi has allowed the aluminum halides to exert a beneficial influence, possibly by the isomerization of an inactive *trans* tungsten intermediate to a reactive *cis* [see more details in Ref. (4)]:

This benefit is *not* derived from the possible formation of n-BuAlX₂ from n-BuLi and AlX₃, as shown by the following experiment:

n-BuLi (0.0004 mole) and AlCl₃ (0.0001 mole) were premixed for 15 min and then 2-pentenes (0.01 mole) and WCl₆ (0.0002 mole) were added successively and reacted for 15 min. This reaction gave 61% conversion and 62 mole % total selectivity, whereas premixing of WCl₆ and *n*-BuLi resulted in 48% conversion but with 93 mole % selectivity (Table 3).

uct olefins should be cis, it is actually mostly *trans*. This may be due to more extensive isomerization by cationic aluminum species.

In summary, small amounts of aluminum halides enhance the reactivity of the WCl₆*n*-BuLi catalyst toward metathesis of 2pentene, possibly by isomerizing an inactive *trans* intermediate, t-WCl₄(2-P)₂, to the active *cis* form, c-WCl₄(2-P)₂. The much higher *trans* isomer than *cis* isomer found in the residual 2-pentene and product 2-butene may well be explained by

TABLE 3Effect of Aluminum Chloride

AlCl ₃ , mole	0 . 00005		.0001	. 0002	. 0004
Conversion, %	15	42	48	54	76
Selectivity to 3-hexene, mole %	44	41	50	47	30
Selectivity to 2-butene, mole %	48	45	43	39	24
Total selectivity, mole $\%$	92	86	93	86	54
2-pentene, trans/cis	1.2	4.8	5.9	5.2	5.0
2-butene, trans/cis	0.8	1.8	2.4	2.6	2.7

TABLE 4Effect of Aluminum Bromide

AlBr ₃ , mole	0	. 0000	5.0001	. 0002	,00025	. 00035	. 0004
Conversion, %	15	30	40	51	50	58	58
Selectivity to 3-hexene, mole %	44	49	49	47	41	34	30
Selectivity to 2-butene, mole %	48	51	51	41	41	34	24
Total selectivity, mole %	92	100	100	88	82	68	54
2-pentene, trans/cis	1.2	2.6	4.2	4.9	4.6	6.5	5.8
2-butene, trans/cis	0.8	1.4	1.8	2.5	2.4	2.3	3.5

The trans/cis ratios of residual 2-pentene shown in Tables 1-4 were those found at the end of 15 min reaction time. They increased rapidly with increasing conversion and aluminum halide. Similarly, the trans/cis ratios of product 2-butene increased almost linearly with increasing aluminum halide in both non-premixing and premixing systems. While our mechanism described in (4) predicts that prodmore extensive isomerization by cationic aluminum species.

References

- 1. CALDERON, N., CHEN, H. Y., AND SCOTT, K. W., Tetrahedron Lett., 3327 (1967).
- CALDERON, N., OFSTEAD, E. A., WARD, J. P., JUDY, W. A., AND SCOTT, K. W., J. Amer. Chem. Soc. 90, 4133 (1968).

- Goodyear Tire & Rubber Co., South African Patent 671,913.
- WANG, J., AND MENAPACE, H. R., J. Org. Chem. 33, 3794 (1968).
- 5. KOTHARI, VIPIN M., AND TAZUMA, JAMES J., J. Org. Chem. 36, 2951 (1971).
- 6. BANKS, R. L., AND BAILEY, G. C., Ind. Eng. Chem. Prod. Res. Develop. 3, 170 (1963).
- BRADSHAW, G. P. C., HOWMAN, E. J., AND TURNER, L., J. Catal. 7, 269 (1967).
- 8. HUGHES, W. B., Chem. Commun., 431 (1969)